Nonlinear forecasting with many predictors using kernel ridge regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression

This paper puts forward kernel ridge regression as an approach for forecasting with many predictors that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor variables are mapped nonlinearly into a high-dimensional space, where estimation of the predictive regression model is based on a shrinkage estimator to avoid overfitting. We extend the kernel ...

متن کامل

Sparse Kernel Ridge Regression Using Backward Deletion

Based on the feature map principle, Sparse Kernel Ridge Regression (SKRR) model is proposed. SKRR obtains the sparseness by backward deletion feature selection procedure that recursively removes the feature with the smallest leave-one-out score until the stop criterion is satisfied. Besides good generalization performance, the most compelling property of SKRR is rather sparse, and moreover, the...

متن کامل

Estimating Predictive Variances with Kernel Ridge Regression

In many regression tasks, in addition to an accurate estimate of the conditional mean of the target distribution, an indication of the predictive uncertainty is also required. There are two principal sources of this uncertainty: the noise process contaminating the data and the uncertainty in estimating the model parameters based on a limited sample of training data. Both of them can be summaris...

متن کامل

Kernel Ridge Regression via Partitioning

In this paper, we investigate a divide and conquer approach to Kernel Ridge Regression (KRR). Given n samples, the division step involves separating the points based on some underlying disjoint partition of the input space (possibly via clustering), and then computing a KRR estimate for each partition. The conquering step is simple: for each partition, we only consider its own local estimate fo...

متن کامل

Faster Kernel Ridge Regression Using Sketching and Preconditioning

Kernel Ridge Regression (KRR) is a simple yet powerful technique for non-parametric regression whose computation amounts to solving a linear system. This system is usually dense and highly illconditioned. In addition, the dimensions of the matrix are the same as the number of data points, so direct methods are unrealistic for large-scale datasets. In this paper, we propose a preconditioning tec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Forecasting

سال: 2016

ISSN: 0169-2070

DOI: 10.1016/j.ijforecast.2015.11.017